Topic 1.1 | GCSE Computer Science | System Architecture

Fetch- Decode- Execute cycle – How the CPU processes instructions:

FETCH: - The processor checks the program counter (PC) to see which instruction to run next. The program counter gives an address value in the memory of where the next instruction is. The processor fetches the instruction value from this memory location in the RAM (main memory).

DECODE: - Decoding the instructions in the ALU, storing the result of this in the CIR.

EXECUTE: - The instruction is performed. Once this is complete, the processor goes back to the program counter to find the next instruction. This cycle is repeated until the program ends.

FACTORS AFFECTING PERFORMANCE OF CPU:

Clock Speed (measured in Hertz)

• Represents the number of fetch execute cycles / instructions the CPU can process in a given time. The higher the clock speed the faster the CPU will run WHY? – Because it will be doing more Fetch-Decode and Execute cycles per second which means more instructions are being processed.

Cache Size

• The holding area for data from the RAM – stores frequently used instructions. More cache then the better the performance. WHY? The more cache the CPU has the less time is spent accessing memory (RAM) this means it can retrieve instructions quicker and programs can run faster.

Number of Cores

• Number of Independent processors within the CPU. Meaning multiple Instructions able to be processed simultaneously in the same cycle. The more cores the quicker the performance – WHY? Quad Core = 4 cores. Can perform 4 instructions at same time in same cycle,

PROGRAM	STORES THE LOCATION OF THE NEXTINSTRUCTION
COUNTER	In a program waiting to befetched
(PC)	
MEMORY	STORES THE LOCATION FOR DATA TO BE
ADDRESS	FETCHEDFROM OR SENT TO MEMORY
REGISTER	
(MAR)	
MEMORY	STORES THE DATA THAT HAS BEEN FETCHED FROM
DATA REGIS-	ORIS WAITING TO BE SENT TO MEMORY
TER (MDR)	
ACCUMULA-	STORES THE RESULT OF THE CALCULATIONPER-
TOR	FORMED BY THE ALU
CURRENT	STORES THE INSTRUCTION READY TO BE DECODED
INSTRUCTION	BYTHE ALU
REGISTER	
ARITHMETIC	PART OF A (CPU) THAT CARRIES OUT ARITHMETIC AND LOGIC
LOGIC UNIT	OPERATIONS IN COMPUTER INSTRUCTION
(ALU)	
` ,	WORKS WITH THE COULTS CONTROL THE FLOW
CONTROL	WORKS WITH THE CPU TO CONTROL THE FLOW
UNIT (CU)	OFDATA WITHIN THE SYSTEM AND TO DECODEIN-
	STRUCTIONS
CACHE	SMALL TEMPORARY VOLATILE MEMORY, STORES-
	FREQUENTLY USED INSTRUCTIONS. QUICKER FOR
	CPUTO ACCESS THAN MAIN MEMORY
MAIN	THIS THE VOLATILE MEMORY THAT STORES DATA AND PRO-
MEMORY	GRAMS CURRENTLY IN USE.
(RAM)	
EMBEDDED	THEY ARE DEDICATED SYSTEMS THAT ARE DESIGNED FOR A
SYSTEM	FIXED PURPOSE.
	THEY ARE A COMPUTER SYSTEM WITHIN A LARGER SYSTEM
	E.G. WASHING MACHINES, CAR PARK BARRIERS, MICROWAVES,
	CAR ENGINES, MP3 ETC
GENERAL	A MACHINE THAT IS CAPABLE OF CARRYING OUT SOME GEN-
PURPOSE	ERAL DATA PROCESSING UNDER PROGRAM CONTROL. E.G PC,
SYSTEM	LAPTOP, PHONE, ETC.
	· ,

Computer Systems