#### Material properties

# Working properties

Consider the different properties when selecting vour material

|                                                                                                           | ,                                                                                                      |                                                                                                           |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Strength                                                                                                  | Elast icit y                                                                                           | Toughness                                                                                                 |
| The amount of<br>load or<br>compression it<br>can withstand                                               | Will it return to<br>shape after<br>being<br>compressed?                                               | Absorption of<br>energy through<br>shock before<br>splitting                                              |
|                                                                                                           |                                                                                                        |                                                                                                           |
|                                                                                                           |                                                                                                        |                                                                                                           |
| Malleability                                                                                              | Duct ilit y                                                                                            | Hardness                                                                                                  |
| Malleability<br>Ability to<br>deform under<br>compression<br>without cracking,<br>splitting or<br>tearing | Duct ilit y<br>Ability to be<br>stretched out<br>or drawn into a<br>thin strand<br>without<br>snapping | Hard ness<br>How resistant is<br>the surface?<br>Will it survive<br>scratches,<br>knocks and<br>abrasion? |

#### Physical properties Consider the different properties when selecting your material

| Absorbency                                                               |                                                                                        | Densit y                                                                        |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| The tendency<br>to attract or<br>take on an<br>element-usually<br>liquid | Fusibility<br>Ability to be<br>converted<br>through heat<br>into a liquid<br>state and | The mass of<br>material per unit<br>of volume-how<br>compact the<br>material is |
| Thermal<br>conductivity<br>Can conduct<br>heat                           | combined with<br>another<br>material<br>before cooling<br>as one                       | Electrical<br>conductivity<br>Can conduct<br>electricity?                       |
|                                                                          |                                                                                        |                                                                                 |
|                                                                          |                                                                                        |                                                                                 |

#### Forces and stresses

Tension: Pulling force on either end of material Compression: Pushing force Torsion: Twisting of the material on either end of a material Bending: Tension and compression either side of its neutral axis

Shear: A force perpendicular to its length

#### Length: 2 hours

#### Sections

A-core technical principles (20 marks) Requires recall knowledge and includes multiple choice

B-Specialist technical principles (30 marks) Requires you to name and explain. You must show understanding of what the question is asking

#### C-Designing and making principles (50 marks) Requires you to understand, justify, make links

and complete extended answers. This section contains the majority of the math's content.

#### Equipment needed Black pen/ Pencil Calculator Protractor Ruler Eraser

Pencil sharpener

## Improving functionality

Strengthening and enhancing materials Reinforcing, Webbing Stiffening materials Laminating, fabric interfacing Folding and bending Reshaping to improve properties, A net

## Ecological and social footprint



# 

## Top tips

- Begin with section C (we advise 60 minutes, then B 40 minutes, then A 20 minutes)
- When given a choice of materials choose polymers or timbers
- ✓ Show your workings in full for all math's questions
- All dimensions are given in mm unless stated otherwise
- Do all drawing work in pencil only
- ✓ Pay attention to how many marks a question is worth. A 2 mark question will require more than one sentence

Decode longer questions by simplifying the language at the top of the page or use BUG (Bubble, Underline, Go back)

For extended questions plan out your question by putting subheadings down the page and how many bullet points you will need to make in each section

# TIPS FOR THE EXAM

#### Product miles

The journey that all materials and components have to have travelled during production and delivery to the customer. Having high product miles will affect the environment more.

## Scales of production

#### One off

Small highly skilled workers, Constant communication with client, Specialist materials, High level of skillresults in higher cost, High standard of quality control

#### Batch

Production line system with workers doing a task each, Semi skilled flexible workers, Changes can be made eg, colour, Parts bought in and assembled

#### Mass

Heavily automated, Many items made identical, High initial costs, Uses lots of energy, Assembly lines used to assemble pre-manufactured parts

#### Continuous

Relying on automation and computers, meaning workers less flexible, Limited training available, Runs 24 hours a day, 365 days a year, Costly machinery

design technology: intelligent design using appropriate technology to make better solu

DELIVERY

The 6 Rs By using the 6R's

designers and

manufacturers will be

what savings they can

make towards their

able to analyse how

sustainable their

solutions are and

carbon foot print

Reduce

Refuse

Re-use

Repair

Recycle

Rethink

# EXAM COMMAND



# WORDS which

Multiple choice State or give question Write a fact or single Shade in the piece of information lozenge

#### Describe

Give a detailed factual account of what something is or how it works Write in full sentences using good SPAG Make one point per mark

#### Explain

Write the reasons or causes of something Use examples and justify your response Write in full sentences using good SPAG

#### Discuss

Write about the key points around the different sides of a topic it should be balanced and come to a conclusion Write in full sentences using good SPAG

#### Evaluate

You should write about the importance, success of or overall worth of different options. The evaluation should come to a conclusion where appropriate Write in full sentences using good SPAG

| Thermoforming                                                                                              |                                                                                                |                                                                                                                 |                                                                                                                          |                                                                                                               |                                                                                                                                               |                                                                                                                                                      | Common drill bits for plastics                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polyethylene<br>terephthalate<br>PETE                                                                      | High density<br>Polyethylene<br>HDPE                                                           | Polyvinyl<br>Chloride<br>PVC                                                                                    | Low density<br>polyethylene<br>LDPE                                                                                      | Polypropylene<br>PP                                                                                           | High impact<br>polystyrene<br>HIPS                                                                                                            | Acrylic<br>PMMA                                                                                                                                      | Acrylonitrile<br>butadiene<br>styrene<br>ABS                                                                                                   | Nylon<br>Polyamide                                                                                                        | Twist drill bits<br>General purpose drill bit,<br>also used on metal and wood<br>Countersink bit                                                                                                                                                                    |
| Clear, easily<br>coloured<br>with a<br>smooth finish                                                       | Opaque,<br>takes colour<br>well, can be<br>textured                                            | Good range<br>of colours<br>with a high<br>gloss finish.<br>Available as<br>sheets or<br>shaped as<br>rigid PVC | Clear, thin to<br>medium thick<br>film with a<br>smooth finish<br>that takes<br>colour well                              | Available in sheets or shapes that are easily coloured                                                        | Flat, clear or<br>coloured<br>sheets for<br>vacuum<br>forming                                                                                 | Thick to thin<br>sheets, bars<br>and tubes in<br>huge ranges<br>with a<br>smooth<br>finish. Can be<br>spun into<br>thread and<br>woven               | Very smooth<br>finish, can be<br>textured and<br>easily<br>coloured                                                                            | Smooth,<br>easily<br>coloured,<br>available in<br>various<br>thicknesses<br>of sheet,<br>bar, film or<br>thread           | Countersink bit<br>Used to ensure countersunk screw<br>heads are flush to the surface<br>Hole saw<br>Used to cut large holes. Can<br>overheat easily due to fast<br>peripheral speed<br>Cutting and sawing plastics<br>Hacksaw/junior hacksaw<br>Cut straight lines |
| Dimensionall<br>y stable,<br>easily blow<br>moulded,<br>chemically<br>resistant and<br>fully<br>recyclable | Lightweight,<br>rip and<br>chemical<br>resistant,<br>premium<br>price paid<br>when<br>recycled | Flexible, high<br>plasticity,<br>chemically<br>resistant,<br>tough and<br>easily<br>extruded                    | Very flexible<br>and tough<br>with a high<br>strength to<br>weight ratio,<br>blow<br>mouldable<br>and easily<br>extruded | Flexible,<br>tough,<br>lightweight,<br>chemically<br>resistant,<br>easily<br>cleaned and<br>safe with<br>food | Flexible,<br>impact<br>resistant,<br>lightweight,<br>can be food<br>safe, sheet<br>used for<br>vacuum<br>forming,<br>very toxic<br>when burnt | Tough but<br>brittle when<br>thin, Easily<br>scratched,<br>formed and<br>bonded,<br>Common in<br>school with<br>laser cutting<br>and line<br>bending | Tough, hard,<br>good<br>chemical<br>resistance,<br>good impact<br>resistance,<br>can be 3d<br>printed,<br>injection<br>moulded and<br>extruded | Self-<br>lubricating,<br>very low<br>friction, hard<br>wearing,<br>easily<br>machined,<br>can be<br>woven into<br>fabrics | Coping saw<br>Cut curved lines in thin material<br>Wasting and abrading methods<br>Bobbin sander<br>Belt<br>sander<br>Files                                                                                                                                         |
| Bottles, food<br>packaging,<br>sheeting and<br>some food<br>wraps                                          | Milk bottles,<br>pipes,<br>storage<br>crates, hard<br>hats and<br>wheelie bins                 | Raincoats,<br>pipes,<br>electrical<br>tape, air<br>mattresses<br>and self-<br>ad hesive<br>vinyl                | Carrier bags,<br>refuse sacks,<br>piping,<br>bottles and<br>some plastic<br>food wraps                                   | Kitchen,<br>medical and<br>stationary<br>products,<br>rope                                                    | Vacuum<br>formed<br>products<br>such as<br>yoghurt<br>pots, food<br>containers                                                                | Car lights,<br>display<br>stands,<br>trophies,<br>table tops,<br>modern<br>baths,<br>jumpers,<br>hats, gloves                                        | Electronic<br>casing, 3d<br>printed<br>products,<br>hard hats,<br>lego                                                                         | Clothing,<br>tights, rope,<br>cogs, gears,<br>brushes,<br>pipes, tents,<br>parachutes                                     | Wet and<br>dry paper   Plastic finishing techniq ues   Painting-spray, Vinyl decals, Flocking,<br>Engraving and frosting, heat transfer<br>printing, tampo printing, hydrographic<br>printing, electro plating, rubberising spray                                   |

SPECÍALÍST TECHNÍCAL PRÍNCÍPLES design technology: intelligent design using appropriate technology to make better solutions

#### Bioplastics

Some plastics can be made from vegetable starches and can be fully biodegradable of composted. Bioplastics are non toxic but cannot be recycled.

PLA (Polyactid acid)-smooth or textured and easily coloured, used in 3d printing Polymorph-A mouldable translucent pellet which can be hand shaped and coloured, reusable PHB (Polyhydroxybutyrate)-smooth or textured and

easily coloured, brittle with little chemical resistance, easily processed and moulded, bottles and disposable food containers

#### Commercial production techniques



Extruder Plastic is heated and pushed through a die to create specific profile like pipe or trunking. Flow rate, temperature and tolerance are all very important.



#### Laminating

Line bending

Involves bonding strips or sheets of material together in layers. It can be done with thick materials to create strong structures or thin materials to create tough and flexible products. Laminated glass is now used in all windscreens. It contains a thin film of plastic which holds the inner and outer glass layers together when it is cracked and shattered.



Bending most plastics involves heat. Strip heaters are used to create permanent folds in thermoplastics like acrylic.

#### Vacuum forming

This can be used to create products as small as Easter egg packaging to baths. HIPS is the most common polymer used in schools but polyester, ABS and acrylic are used in industry. To ensure a good outcome you need:

- A positive draft angle >3° so mould can be removed
- ٠ Avoid undercuts-to remove mould
- Not too deep a profile so it does not stretch material too thin
- Vent holes drilled to avoid air pockets
- Have a smooth finish so it does not adhere to the hot plastic





HEATER

Plastic is clamped in, heat is applied, when it becomes flexible the mould is lifted and then a vacuum is applied, the plastic forms over the mould, remove when cool

#### 3d printing

This is done by creating STL or VRML CAD files input into a printer, which uses reels of thermoplastics, Fused deposition modelling (FDM) is the most common method in schools but other methods include Stereo lithography, digital light processing and laser sintering. ABS and PLA plastic are most commonly used. You can print in metals, paper, ceramics and food. Bio printing is being developed so in the future we may be able to print replacement body parts.

> Addition, deforming and reforming



Sheets, rods, tubes

and films

Powder, granules, foam

#### come from crude oil in a process called fractional distillation. The separated fluids that are separated are not suitable at this stage to be turned into plastic due to the large hydrocarbon molecules which do not flow well. Cracking is the process of converting large hydrocarbons into small more useful versions.



lamination of

fibrealass

| Thermosetting                                                                                                                                      |                                                                                                                           |                                                                                                                 |                                                                                                                                       |                                                                                                                                                         |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Epoxy resin<br>ER                                                                                                                                  | Melamine<br>formaldehyde<br>MF                                                                                            | Urea<br>formaldehyde<br>UF                                                                                      | Polyester<br>resin<br>PR                                                                                                              | Phenol<br>formaldehyde<br>PF                                                                                                                            |  |  |  |
| Supplied as<br>two liquids-a<br>resin and a<br>hardener.<br>Sets clear<br>with a<br>smooth<br>finish. Can be<br>coloured                           | Formed and<br>moulded into<br>a variety of<br>shapes,<br>smooth,<br>available in<br>many colours<br>and can be<br>printed | Very smooth<br>finish, mainly<br>white, limited<br>colours<br>available,<br>very<br>versatile                   | Similar to<br>epoxy resin,<br>supplied as 2<br>liquids. Sets<br>very clear<br>and smooth<br>and can be<br>coloured                    | Freq uently<br>injection<br>moulded,<br>limited<br>colour<br>palette with<br>a high gloss<br>finish<br>achievable                                       |  |  |  |
|                                                                                                                                                    |                                                                                                                           |                                                                                                                 |                                                                                                                                       | 30                                                                                                                                                      |  |  |  |
| Stronger<br>than other<br>resins,<br>better<br>strength to<br>weight ratio,<br>expensive,<br>heat<br>resistant,<br>good<br>electrical<br>insulator | Food safe<br>and hygienic,<br>lightweight,<br>hard, brittle<br>but not<br>microwave<br>safe                               | Heat<br>resistant,<br>very good<br>electrical<br>insulator,<br>hard, brittle,<br>easily<br>injection<br>moulded | Reasonable<br>strong, heat<br>resistant,<br>good<br>electrical<br>insulator,<br>high VOCS<br>when curing<br>similar to<br>Epoxy resin | Formerly<br>known as<br>Bakelite,<br>very rigid,<br>hard and<br>brittle,<br>excellent<br>electrical<br>insulator<br>with good<br>chemical<br>resistance |  |  |  |
| Bonding<br>materials<br>together,<br>electronic<br>circuit                                                                                         | Kitchenware<br>and heat<br>resistant<br>surfaces<br>bonded to                                                             | Electrical<br>fittings and<br>casings,<br>buttons,<br>handles,                                                  | Encapsulatin<br>g artefacts,<br>waterproof<br>coatings,<br>flooring,                                                                  | Electrical<br>components,<br>mechanical<br>parts,<br>casting resin                                                                                      |  |  |  |

fabric

treatment

design technology: intelligent design using appropriate technology to make better solut

worktops

furniture

and flat pack

boards,

waterproof

coatings,

fibre glass